Kernel Conjugate Gradient for Fast Kernel Machines

نویسندگان

  • Nathan D. Ratliff
  • J. Andrew Bagnell
چکیده

We propose a novel variant of the conjugate gradient algorithm, Kernel Conjugate Gradient (KCG), designed to speed up learning for kernel machines with differentiable loss functions. This approach leads to a better conditioned optimization problem during learning. We establish an upper bound on the number of iterations for KCG that indicates it should require less than the square root of the number of iterations that standard conjugate gradient requires. In practice, for various differentiable kernel learning problems, we find KCG consistently, and significantly, outperforms existing techniques. The algorithm is simple to implement, requires no more computation per iteration than standard approaches, and is well motivated by Reproducing Kernel Hilbert Space (RKHS) theory. We further show that data-structure techniques recently used to speed up kernel machine approaches are well matched to the algorithm by reducing the dominant costs of training: function evaluation and RKHS inner product computation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Conjugate Gradient

We propose a novel variant of conjugate gradient based on the Reproducing Kernel Hilbert Space (RKHS) inner product. An analysis of the algorithm suggests it enjoys better performance properties than standard iterative methods when applied to learning kernel machines. Experimental results for both classification and regression bear out the theoretical implications. We further address the domina...

متن کامل

On the equality of kernel AdaTron and sequential minimal optimization in classification and regression tasks and alike algorithms for kernel machines

The paper presents the equality of a kernel AdaTron (KA) method (originating from a gradient ascent learning approach) and sequential minimal optimization (SMO) learning algorithm (based on an analytic quadratic programming step) in designing the support vector machines (SVMs) having positive definite kernels. The conditions of the equality of two methods are established. The equality is valid ...

متن کامل

The Inversion of Poisson’s Integral in the Wavelet Domain

A wavelet transform algorithm combined with a conjugate gradient method is used for the inversion of Poisson’s integral (downward continuation), used in airborne gravimetry applications. The wavelet approximation is dependent on orthogonal wavelet base functions. The integrals are approximated in finite multiresolution analysis subspaces. Mallat’s algorithm is used in the multiresolution analys...

متن کامل

Revisit of Logistic Regression: Efficient Optimization and Kernel Extensions

Logistic regression (LR) is widely applied as a powerful classification method in various fields, and a variety of optimization methods have been developed. To cope with large-scale problems, an efficient optimization method for LR is required in terms of computational cost and memory usage. In this paper, we propose an efficient optimization method using non-linear conjugate gradient (CG) desc...

متن کامل

Kernel Conjugate Gradient is Universally Consistent

We study the statistical consistency of conjugate gradient applied to a bounded regression learning problem seen as an inverse problem defined in a reproducing kernel Hilbert space. This approach leads to an estimator that stands out of the well-known classical approaches, as it is not defined as the solution of a global cost minimization procedure over a fixed model nor is it a linear estimato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007